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The penetration of magnetic flux into a type II superconductor is determined by two 
coupled, nonlinear, diffusion equations for the flux and temperature. These equations 
have been written in standard finite difference forms, and in this work solutions have 
been obtained for values of the time less than a critical value. The latter has been 
identified with the onset of a physical instability known as a flux jump. 

1. INTRODUCTION 

The problem considered here concerns the effects of magnetic fields upon type II 
superconductors, and it arises basically from the practical interest in producing 
superconducting magnets [l]. One of the major difficulties with these materials is 
that for specimens above a certain size an increasing magnetic field may suddenly 
penetrate catastrophically, thereby destroying the superconducting state. This 
unstable penetration of the field is referred to as a flux jump, and its occurrence is 
determined by the thermal distribution within the sample. The purpose of the 
present work was to simulate the conditions inside an infinite slab of material 
using a computer with a view to predicting the onset of a jump. 

The penetration of the magnetic flux density B is determined by a nonlinear 
diffusion equation. If the sample is subjected to a sweeping external magnetic 
field the flux diffuses in and produces a local heating of the specimen. The resulting 
temperature distribution T also satisfies a nonlinear diffusion equation, and in fact 
the equation for B and Tare coupled by the field and temperature dependence of 
the physical parameters of the material. For an infinite slab, the problem 
reduces to the one dimension (x, e.g.) perpendicular to the slab faces, and the 
appropriate equations for B and Tare given in the following section. 

In solving these equations numerically, the major concern was to ensure that 
the solutions of the finite difference equations were stable. While this is always 
important, it was particularly so here because the aim was to predict rapid vari- 
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ations in the ‘real’ solutions, i.e., flux jumps. Since no general criteria exist for the 
stability of nonlinear finite difference equations, methods known to be stable for 
Zineur equations have been used, e.g., iteration of the Crank-Nicolson form of 
finite difference equation for the temperature distribution. 

2. THE BASIC EQUATIONS 

The penetration of magnetic flux into a superconductor is described by the 
equation [2-41 

in which p. is a constant, and x is measured from the center of the slab. The func- 
tional forms of FD and 7 are known from experiment and in the calculations were 
assumed to be given by the approximate formulas [3,4] 

F,(T) = Foil - (T/Tc)212 (2) 
and 

m = Ilou - cvJ2h (3) 

where F, , qo, and T, are physical constants. The power P(x, t) generated by the 
magnetic field is given by 

and the temperature distribution produced by the heating is determined by the 
equation 

aT -= 
at 

#2+-LgL+zy. (5) 

The thermal conductivity Kand specific heat S were assumed, again from analysis of 
experimental data [5, 61 of extreme type II materials, to depend upon temperature 
approximately as 

K(T) = KoT9 (6) 
and 

S(T) = SOTS (7) 

where K, and So are constants. 
At the center of the slab it is required by symmetry that 

aTlax = 0 and B(-x) = B(x). (8) 
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At the surface of the specimen, x = X, say, the magnetic flux density was increased 
(by external means) at a steady rate &, from some fixed initial value Bin . Hence 
at time t 

B(X, t) = Bin + Bint. (9) 

The boundary condition for the temperature at the surface is determined by the 
appropriate law for the rate of loss of heat. The latter is usually taken to be propor- 
tional to some power of the temperature difference between the surface and the 
surrounding external temperature T,, , say. For the problem in hand the surrounding 
fluid is liquid helium, and experimental measurements [7, 81 suggest a cubic law 
is appropriate for small heat flow, thus 

where Q, is a constant. 
The starting solutions employed were as follows. A small value of the external 

flux Bin equal to 0.1 T was assumed which was well below the flux at which insta- 
bilities were expected. The flux distribution inside the specimen was then obtained 
by direct integration of Eq. (1) with BB/BT = 0, and was 

B(x, 0) = [B& - 2p,,F,(T)(x, - x)]'/~. (11) 

Thus flux penetrated into the specimen a distance (x, - x’), where x’ satisfied 
B(x', 0) = 0, and for x < x’ it was supposed that B(x, 0) = 0, so that one has 
essentially an initial value problem. 

The temperature distribution at t = 0 was assumed to be uniform and slightly 
above the temperature of the surroundings. This value of the temperature was 
used in Eq. (11). 

3. FINITE DIFFERENCE EQUATIONS 

At any particular time, specified in terms of an increment d t by an integer j 
(t = jdt), suppose that the temperature and field distributions Tj(x) and Bj(x) 
are known. To advance the solutions in time the procedure adopted was to deter- 
mine firstly Bj+&), then the power Pj+l(x), and finally the new temperature 
distribution Tj+,(x). 

It was found that the solutions of the magnetic flux Eq. (1) were much less 
sensitive than those for the temperature equation to the physical and numerical 
parameters involved, and a simple forward difference expression for it was found 
to be satisfactory. Explicitly (1) was written as 
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wheref,+l(x) is readily identified by comparison with the original. A first approxi- 
mate solution, Bi$(x) say, was obtained by letting aB/lJt = 0, and the result is 
given by (11) with Bin replaced by {Bin + &(j + 1) At}. A better solution was 
obtained by evaluating 

f~l(X = iA = Po~,(Ti*d + ~o~tTi.,)tl/At>[~~~+l - 4i.d, 

where integer i labels the mesh in x, and 

(13) 

Expression (13) was then repeatedly substituted into the following simple finite 
difference equation for Bj+l(x), and a solution obtained by iteration, where for the 
I-th iterate 

B~~,,i+, = &%+I - (Ax/B:+,) fw%+l . (15) 

The solution was advanced into the specimen from the surface x, = n Ax as far 
as necessary for B to become zero. 

The power distribution generated by the change in B in time At is given by 
Eq. (4), which was written as 

P i,~+l = W44o)Wx AWi+l.i+l - Bi-1.,+3th+l - hi). (16) 

It is clear that the power is only finite in regions where B is nonzero. In fact dP/dx 
becomes large at the nose of the magnetic field distribution where B -+ 0, and 
problems were encountered because of this. These will be discussed in the following 
section. 

The temperature diffusivity Eq. (5) was written in the Crank-Nicolson form of 
finite difference equation [9] 

1 1 
+ s (Ax)~ Si,, - J- wi+1,5 - Ki-1.51 

P. . 
X {G+I,~+I - Ti-l,j+l + T~+IJ - T,-l.j> + T * (17) 

rJ 

Collecting together terms and rearranging, it can be shown that for the k-th 
iteration within a Gauss-Seidel scheme [lo] 

Ts?+, = (l/(1 + W){(r - Cd Ti%,,+l + tr + &) Tt;:,, + bi.d W) 
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where 

and 

r = (1/2)(~o/~~)(~~/(~x)2), (19) 

r;,j = (1/8s,,3>(4l/(dx)‘)(Ki+l,i - &.ih (20) 

bi.5 = Ti,i + rETi-,,j - 2Tt.j + Ti+,,fl + (P,,,Is~,~) At + ri’,dTi+,,~ - Ti-1.i). (21) 

Equation (18) is trivially converted to one which is over relaxed, but, as will be 
discussed later, it was found that for the choice of parameters employed, the 
optimum relaxation factor was unity. 

At the center of the specimen (i = 0) the boundary condition aT/ax implies 
that T-,,j = Tl,j and hence that X/ax = 0. Thus from (18) and (21) 

T,‘i”),, = (l/(1 + WW72~2 + b,,,G (22) 
where 

bo.5 = 2dT1.j - To.5) + (&$~d J’o,j + TOA . (23) 

At the surface of the specimen (i = n) the following finite difference form of Eq. (10) 
yields 

4. PRACTICAL CONSIDERATIONS 

The appropriate values of the constants occurring in (I)-(10) were known from 
experimental data, and those used in the present calculations are listed in Table I. 

The choice of increment dx was determined by the fact that near the nose of 
the magnetic field distribution (see Fig. l), the derivative S/ax became very large. 
As a result, for small values of n (e.g., n = 20), significant oscillations in the 
temperature distribution were obtained, and it was found necessary to employ n 
as large as 100. To further aleviate this particular problem the power distribution 
was rounded at the nose by putting a small value for the power on the x-mesh 
point preceding it. With n = 100 the increment dx for the specimen thickness 
employed was 4.16 x 10-6m, and this was used in all stages of the computation. 

The minimum size for dt was restricted by the computing time available, and 
a value of dt = 0.001 set was the smallest practicable. This was so much larger 
than dx that the conditions for obtaining solutions of the temperature diffusivity 
equation appeared most unfavorable. Assuming by analogy with the theory of 
linear equations that an important parameter is r defined by Eq. (19), then with 
K0 = 5 x lOA and S, = 60 this has the value 

r = (l/2)(K,/~b)(dt/(dx)2) N 240. (25) 
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TABLE I 

Parameters Employed 

Slab thickness 8.32 x 10-4m 

TC 10K 

4 0.8 x log Nm-3 

70 lo5 N mm4 s Tesla-l 

KO 0.5 m W m-l deg-4 

so 60 J IT+ deg-4 

QO 6 x lo4 W mea deg-3 

TO 4.2 K 
Bin 0.1 T 
Bin 0.7 T set-’ 

It is well known in the theory of linear equations that the equivalent quantity 
dt/(d# must be less than 0.5 for explicit methods, but no such restriction applies 
to the implicit Crank-Nicolson method (see for example Ref. [I 11) and the same 
was assumed regarding r for nonlinear equations. 

Again by analogy with the linear case it is possible to make an estimate of the 
optimum relaxation factor (w) to be made in a method of successive over relaxation 
[lo, 121. With the value of r given by Eq. (25) evaluation of 

w = l/(1 + (1 - @l/2) with 19 = (r/(1 + r)) cos(7~/n) (26) 

yields w = 1 .OOO, implying that the finite difference equations reduce to the Gauss- 
Seidel form described above. 

Iterative methods were used in order to take advantage of the large number of 
zeros in the appropriate matrices, especially for the magnetic field diffusion 
equation. The number of iterations required for a solution of the latter to an 
accuracy of 1O-3 % was always found to be less than 30, but the convergence of 
the solutions of the temperature equation was generally poor. In this case the 
criteria for convergence were first that successive temperatures at several selected 
values of i should differ by less than 1O-3 %, and second, if this was fulfilled, 
iteration was only terminated provided the sum 

was less than 1O-3 ‘A. A minimum of 80 iterations were made, and computing was 
stopped if the number exceeded 700. 

The equations were coded in FORTRAN for an ICL-KDF9 computer. 
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5. RESULTS AND DISCUSSION 

Figure 1 shows some typical results obtained for the magnetic flux distributions 
through the specimen, and Figs. 2 and 3 illustrate the differences in the temperature 
distributions obtained for values of dt = 0.002, and 0.001 set, respectively. In 
view of the computing time restrictions which made it impractible to reduce At 
further, the results obtained for d t = 0.001 have been assumed to be reasonable 
representations of the physical situation. That being so it is clear from Fig. 3 that 
the rate of temperature rise has increased after time t = 0.700 set, and this is 
illustrated explicitly in Fig. 4 where the temperature at the point i = 60 is plotted 
as a function of time. Further, after time t = 0.726 set the rise is so rapid that the 
convergence of the solutions of the temperature equation can not be obtained within 
the maximum number of iterations specified. These facts are taken as evidence 
that the rate of temperature increase is running away, thereby allowing rapid entry 
of the magnetic field through the functional dependence of F, and 7, and hence 

FIG. 1. Solutions for the magnetic flux density distribution in one half of the slab obtained 
using At = 0.001. 
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indicating that a flux jump has been initiated at a time approximately equal to 
t = 0.726. The value of the external field when this occurs is obtained from Eq. (9) 
to be 0.608T, which compares favorably with the appropriate experimental values 
obtained by Wipf and Lube11 [ 131. 
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FIG. 2. Temperature distributions in one half of the slab calculated using At = 0.002. 

In order to observe the behavior of the magnetic field and temperature distri- 
butions during a flux jump it will be necessary to reduce At well below 0.001 sec. 
It is known from experiment that the jump is completed in a time of order 0.001 set, 
and hence the inability of the present calculation to obtain convergent iteration 
for T(x) once the instability has begun is not surprising. It is intended to employ 
smaller At values when a more powerful computer becomes available to the authors 
in the near future. It may then be possible to follow the rapid temperature 
rise until the temperature reaches the constant T, of Eqs. (2) and (3), at which point 
the behavior is no longer described by the equations given in Section 2. 
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FIG. 3. Temperature distributions calculated with dr = 0.001. 
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FIG. 4. The temperature at the position x specified by r’ = 60 as a function of time. 
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6. CONCLUSIONS 

The main difficulties of the problem considered here arose from the nonlinearity 
of the equations and the consequent restrictions on computing time imposed by 
this. In order to avoid further complications as much as possible the numerical 
methods employed were simple and conventional, although it was found necessary 
to use some insight into the physics, for example in slightly modifying the power 
distribution. The onset of the instability inferred from the results obtained for 
At = 0.001 is in good agreement with experiment, and it is concluded that meaning- 
ful solutions can be obtained with the methods used even when At is so large. 
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